Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tuncer Hökelek, ${ }^{\text {a* }}$ Zeynel Seferoğlu ${ }^{\text {b }}$ and Nermin Ertan ${ }^{\text {b }}$
 ${ }^{\text {a }}$ Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and
 ${ }^{\text {b }}$ Department of Chemistry, Gazi University, 06500 Beşevler, Ankara, Turkey

Correspondence e-mail:
merzifon@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.068$
$w R$ factor $=0.187$
Data-to-parameter ratio $=8.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Amino-4-(4-methoxyphenyl)-1,3-thiazole

The molecule of the title compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$, is not planar, with a dihedral angle of 14.8 (2) ${ }^{\circ}$ between the planes of the benzene and thiazole rings. Molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between the amino H atoms and O and N atoms of the methoxy group and thiazole ring, respectively, forming an infinite chain.

Comment

Heterocycles containing the 1,3 -thiazole ring system exhibit a wide spectrum of biological activities, including antiviral and antifungal. The 1,3-thiazole ring has been identified as a central structural element of a number of biologically active natural products (Zabriskie et al., 1988; Hara et al., 1988; Crews et al., 1988) and of pharmacologically active compounds (Metzger, 1979, 1984). The bioactivity of S, N-thiazoles is mainly due to their structural similarities with protein imidazolyl entities (Kornis, 1984) as well as their biological, structural, electronic and spectroscopic properties (Comba, 1993; Brown \& Lee, 1993). Their existence may modify the bioactive and pharmaceutical characteristics of the adducts (Chohan et al., 2002; Nakamura et al., 1995; Boden \& Pattanden, 1994). This study was undertaken in order to ascertain the crystal structure of (I).

Compound (I) (Fig. 1) is a 2-aminothiazole, (II) (Caranoni \& Capella, 1982), and/or a 2-amino-4-phenylthiazole, (III) (Au-Alvarez et al., 1999), derivative.

Comparing (I) with (III) reveals that all bond lengths and angles of the thiazole ring in (I) are nearly the same. The C2$\mathrm{S} 1-\mathrm{C} 5\left[88.4(3)^{\circ}\right]$ bond angle in (I) is smaller than the corresponding one [90.17 ${ }^{\circ}$] in 2-amino-4-phenylthiazole hydrobromide monohydrate, (IV) (Form et al., 1974), while it is nearly the same as that $\left[88.7(2)^{\circ}\right]$ in (III).
An examination of the deviations from the least-squares planes through individual rings shows that the thiazole and benzene rings are both planar. The dihedral angle between the two rings is 14.8 (2) ${ }^{\circ}$. The thiazole ring has a pseudo-twofold axis running through S 1 and the mid-point of the $\mathrm{N} 3-\mathrm{C} 4$ bond (Table 1).

Received 16 March 2006
Accepted 23 March 2006

An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is shown as dashed lines.

Figure 2
Packing diagram of (I). Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

It is claimed that the planarity of the molecule in (III) is related to the shortness of the $\mathrm{C} 4-\mathrm{C} 6$ bond length (AuAlvarez et al., 1999). The C4-C6 bond lengths are 1.477 (8), 1.473 (5) and $1.505 \AA$, while the dihedral angles between the planes of the benzene and thiazole rings are 14.8 (2), 6.2 (3) and 19.23° in (I), (III) and (IV), respectively. The C4-C6 bond length in (III) is 0.004 and $0.029 \AA$ shorter than those in (I) and (IV), respectively. Thus, the C4-C6 bonds may be assumed as nearly the same in (I) and (III). However, the differences between the dihedral angles are 8.6° [for (I) and (III)] and 13.03° [for (III) and (IV)]. As a result, there is no clear relationship between the coplanarity of the benzene and thiazole rings and the shortness of the $\mathrm{C} 4-\mathrm{C} 6$ bonds.

The crystal packing is stabilized by intramolecular and intermolecular hydrogen bonds, forming a chain (Table 2 and Fig. 2).

Experimental

For preparing the title compound, (I), a mixture of 4-methoxyacetophenone ($0.150 \mathrm{~g}, 0.001 \mathrm{mmol}$), thiourea ($0.152 \mathrm{~g}, 0.002 \mathrm{mmol}$) and iodine $(0.254 \mathrm{~g}, 0.001 \mathrm{mmol})$ in methanol (40 ml) was heated on a steam bath for 5 h . The hydroiodide separated; the product was filtered off, washed with diethyl ether and then dried. It was dissolved in hot water, the solution was filtered while hot and the clear solution
was neutralized with an aqueous solution of ammonia ($1.0 \mathrm{ml}, 25 \%$). The resulting solid was filtered off and recrystallized from ethanol (yield $0.2 \mathrm{~g}, 97 \%$; m.p. 484 K).

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=206.26$
Orthorhombic, $P n 2_{1} a$
$a=7.181$ (2) \AA
$b=7.750(2) \AA$
$c=17.994$ (3) \AA
$V=1001.4$ (4) \AA^{3}
$Z=4$
$D_{x}=1.368 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius TurboCAD-4 diffractometer
Non-profiled ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.475, T_{\text {max }}=0.768$
1034 measured reflections
1034 independent reflections
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2.6-28.3^{\circ}$
$\mu=2.61 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Plate, colorless
$0.35 \times 0.25 \times 0.10 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.187$
$S=1.05$
1034 reflections
127 parameters
H-atom parameters constrained

> 847 reflections with $I>2 \sigma(I)$
> $\theta_{\max }=70.8^{\circ}$
> $h=0 \rightarrow 8$
> $k=0 \rightarrow 9$
> $l=-22 \rightarrow 0$
> 3 standard reflections frequency: 120 min intensity decay: 1%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1346 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.65 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), no } \\
& \quad \text { Friedel pairs } \\
& \text { Flack parameter: }-0.01(7)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 5$	$1.728(7)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.395(7)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.733(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.336(8)$
$\mathrm{N}-\mathrm{C} 2$	$1.353(8)$	$\mathrm{C} 6-\mathrm{C} 4$	$1.477(8)$
$\mathrm{N} 3-\mathrm{C} 2$	$1.310(7)$		
$\mathrm{C} 5-\mathrm{S} 1-\mathrm{C} 2$	$88.4(3)$	$\mathrm{N} 3-\mathrm{C} 2-\mathrm{S} 1$	$115.0(4)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$110.2(5)$	$\mathrm{N}-\mathrm{C} 2-\mathrm{S} 1$	$120.7(4)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N}$	$124.3(6)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	$114.9(5)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 4$	$1.0(5)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2-\mathrm{S} 1$	$-3.1(6)$
$\mathrm{C} 5-\mathrm{S} 1-\mathrm{C} 2-\mathrm{N} 3$	$1.3(5)$	$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1$	$-3.0(7)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$3.9(7)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.39	$3.040(9)$	133
$\mathrm{~N}-\mathrm{H} 2 \cdots \mathrm{~N}^{\mathrm{ii}}$	0.86	2.11	$2.968(7)$	175
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 3$	0.93	2.60	$2.913(7)$	100

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x-\frac{1}{2}, y,-z+\frac{1}{2}$.

H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86$ and $\mathrm{C}-$ $\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H atoms, and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{N})$,
where $x=1.2$ for aromatic $\mathrm{H}, x=1.5$ for methyl H and $x=1.6$ for amino H .

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

Au-Alvarez, O., Peterson, R. C., Crespo, A. A., Rodríguez Estava, Y., Marquez Alvarez, H., Plutín Stiven, A. M. \& Pomés Hernández, R. (1999). Acta Cryst. C55, 821-823.
Boden, C. \& Pattanden, G. (1994). Tetrahedron Lett. 35, 8271-8274.
Brown, T. L. \& Lee, K. J. (1993). Coord. Chem. Rev. 128, 89-116.
Caranoni, C. \& Capella, L. (1982). J. Appl. Cryst. 15, 106-107.
Chohan, Z. H., Pervez, H., Rauf, A., Scozzafava, A. \& Supuran, C. T. (2002). J. Enzyme Inhib. Med. Chem. 17, 117-122.

Comba, P. (1993). Coord. Chem. Rev. 123, 1-48.
Crews, P., Kakou, Y. \& Quinoa, E. (1988). J. Am. Chem. Soc. 110, 4365-4368.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Form, G. R., Raper, E. S. \& Downie, T. C. (1974). Acta Cryst. B30, 342348.

Hara, M., Asano, K., Kawamoto, I., Takiguchi, I., Katsumata, S., Takahashi, K. \& Nakano, H. J. (1988). J. Antibiot. 42, 1768-1774.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kornis, G. (1984). 1,3,4-Thiadizoles, in Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky, Vol. 6, Part 4B, pp. 545-578. New York: Pergamon Press.
Metzger, J. V. (1979). Chemistry of Heterocyclic Compounds, p 34. New York: Wiley.
Metzger, J. V. (1984). Thiazoles and their Benzo Derivatives, edited by K. T. Potts, Vol. 6. New York: Pergamon Press.
Nakamura, M., Shibata, T., Nakane, K., Nemoto, T., Ojika, M. \& Yamada, K. (1995). Tetrahedron Lett. 36, 5059-5062.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zabriskie, T. M., Mayne, C. L. \& Ireland, C. M. (1988). J. Am. Chem. Soc. 110, 7919-7920.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

